Close-up 3D rendering of a rough, jagged surface texture with sharp peaks and grooves, illustrating.
By Doug September 26, 2025
Discover why surface finish is critical to polymer seal performance. Learn best practices, treatments, and cost–benefit insights for reliable sealing.
Close-up photo of two white O-rings placed on a white background.
By Doug Montgomery September 23, 2025
Learn about PTFE’s advantages and disadvantages, including its properties, performance limits, and when PTFE O-rings are the best sealing solution.
 Extrusion Gaps
By Doug Montgomery August 16, 2025
Learn how extrusion gaps affect seal performance, factors that influence extrusion resistance, and design strategies for high-pressure sealing success.
Spring Energized Seals in Autonomous Underwater
By Doug Montgomery July 22, 2025
See how Eclipse solved a low-torque, deep-sea sealing challenge for AUVs with a custom spring-energized seal and EH042 thermoplastic elastomer.
Compare canted coil, cantilever, and helical springs to find the right energizer for your PTFE seal.
By Doug Montgomery June 24, 2025
Aside from ball valve seats or non-contact labyrinth seals, PTFE is rarely used without a secondary energizer. This is due to PTFE’s inelastic nature. Unlike urethanes or elastomers which possess an inherent springiness, PTFE is often considered an “unalive” material. Much like a lump of clay, it will not bounce back once deformed. Especially in dynamic applications, this is not a desirable quality. Fortunately, with the addition of a spring or elastomer energizer, all of PTFE’s excellent attributes can be fully exploited in terms of sealing. Much like the rest of the seal industry, Eclipse utilizes three metallic spring energizer types for the seals we manufacture. Canted Coil, Cantilever V-Spring, and Helical. While each spring type ultimately accomplishes the same task, energizing a PTFE or polymer seal jacket, we’ll see that each type has unique properties better suited to certain applications.  Figure 1 below shows generalized load versus deflection curves for the three spring types. As you can see, each one is quite a bit different, favoring distinct circumstances and applications. Though, we’ll also find out load curves are not only deciding factor when choosing a spring.
Cryogenic Gas Sealing
By Doug Montgomery May 28, 2025
Explore the innovation behind Eclipse’s polymer superfinishing technique that enabled high-performance PTFE seals to meet extreme hydrogen leakage and durability requirements in cryogenic aerospace applications.
Balancing Extrusion Gap
By Doug Montgomery April 17, 2025
Discover how Eclipse Engineering optimized seal design for high-pressure CO₂ extraction, addressing extrusion gaps and wear ring exposure challenges.
Learn how Eclipse solved manufacturing challenges for micro spring-energized seals
By Doug Montgomery March 21, 2025
Learn how Eclipse solved manufacturing challenges for micro spring-energized seals, optimizing sealing performance in epoxy dispensing equipment.
Custom Spring Energized
By Doug Montgomery February 13, 2025
Learn how Eclipse Seal’s custom spring energized ball seats with angled grooves improve performance
Learn how Eclipse Engineering optimized a dual-lip crimped case seal for a high-speed rotary vacuum.
By Doug Montgomery January 17, 2025
Learn how Eclipse Engineering optimized a dual-lip crimped case seal for a high-speed rotary vacuum application, improving performance and reliability.
PEEK Spring Energized Seal
By Doug Montgomery November 25, 2024
Discover how Eclipse designed a PEEK spring-energized seal to perform in extreme high-temperature and high-radiation conditions.
Robust Rotary Sealing
By Doug Montgomery November 14, 2024
Technological advancements in the area of robotics have led to more and more life-like creations existing only in works of science fiction a few decades ago. Development in autonomous logic processing and sensing allows bipedal robots to walk over uneven ground, up and down stairs, open doors and carry loads. Fast response to dynamic and unpredictable real-world environments is critical for the future use of robots in true-life service and practical employment in the years to come. While software and sensor development remain the primary focus of most research, the physical mechanics of next-gen robotics are also continually progressing. Physical components and control systems such as hydraulic pumps and cylinders, servo motors, and structural members are under pressure to continually be lighter, stronger, more efficient and less expensive. Increased demands on the physical components facilitate the need for innovative solutions in design and material usage. Advancements in construction and technology have spilled into all areas of robotic mechanisms and the many seals located throughout the system need to meet the challenges of tomorrow. Eclipse has been at the forefront of this research and has developed innovative solutions pushing the boundaries of conventional sealing devices. MicroLip™ by Eclipse is a prime example of most demanding applications forging new technologies in the sealing world. The Client's Issue Eclipse was approached by a leading robotics company looking for a sealing solution operating under a challenging set of conditions. While many components of tomorrow’s robotics are now controlled and actuated by servo/stepper motors and various electronic devices, the heaviest and most powerful movements are still driven by traditional hydraulics. The constant demand for more powerful hydraulic actuation in ever deceasing size and weight requirements has put tremendous strain on component design. But if robots are to progress to the point where they are usefully employed in the world, high power in a compact design is necessary. A robot, for example, used to survey and assist in a disaster zone too unstable for normal rescuers, must fit through doorways and over obstacles yet still be physically strong enough to render assistance. Large hydraulic systems are capable of moving extremely heavy loads but size and weight constraints of a humanoid size robot limit potential. The robot’s internal power supply to drive all components is also a limiting factor. Our client was developing a new hydraulic pump to drive all major motion aspects of their robotic systems. Their main objective was to minimize the pump’s physical size as much as possible while increasing output and improving power consumption efficiency. This means higher pressures and speeds on increasingly smaller and lighter components. Application Parameters: Shaft Diameter: Ø9.5mm Seal Housing Envelope: 5mm radial cross-section by 6mm axial width Rotational Speed: 3,500 RPM nominally; 6,000 RPM max Operating Pressure: 125 PSI min, 225 PSI nominal, 350 PSI max Surface Finish: 0.04µm Media: Hydraulic Oil While the above combination of pressure and speed might present difficulties for any conventional seal alone, the client’s extremely small physical envelope to house the seal further complicated the matter. If that wasn’t enough, the application presented the additional sealing challenge of up to 0.003” [0.08mm] of shaft runout. As part of the downsizing of all components in the pump, shaft support bearings were minimized leading to the possibility of runout. The wobbling effect of the shaft creates problems as the sealing lip has follow a moving, uneven mating surface, therefore potential leak-paths are created. Wear life can also be compromised due to higher concentrations of uneven loads. The combination of high pressure, high speed, high runout and minimal gland size present a worst-case scenario for a typical seal. Unsurprisingly, the client faced leakage of hydraulic fluid after only short periods of service with any conventional seal they had tested. Eclipse knew the had the perfect solution for this application. One developed to handle such extreme rotary sealing conditions: MicroLip™.
Show More

"We started Eclipse with the premise that if we could solve enough of our customers problems they would continue to come back to us for solutions regardless of the type of products we offered."

Eclipse Engineering
Engineers

What Can We Help You With?

Start a project request form and give us the specifics of your project. Our team will review and be in touch with you shortly!

CONTACT US